Sonochemical fabrication and characterization of stibnite nanorods.

نویسندگان

  • Hui Wang
  • Yi-Nong Lu
  • Jun-Jie Zhu
  • Hong-Yuan Chen
چکیده

Regular stibnite (Sb(2)S(3)) nanorods with diameters of 20-40 nm and lengths of 220-350 nm have been successfully synthesized by a sonochemical method under ambient air from an ethanolic solution containing antimony trichloride and thioacetamide. The as-prepared Sb(2)S(3) nanorods are characterized by employing techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and optical diffuse reflection spectroscopy. Microstructural analysis reveals that the Sb(2)S(3) nanorods crystallize in an orthorhombic structure and predominantly grow along the (001) crystalline plane. High-intensity ultrasound irradiation plays an important role in the formation of these Sb(2)S(3) nanorods. The experimental results show that the sonochemical formation of stibnite nanorods can be divided into four steps in sequence: (1) ultrasound-induced decomposition of the precursor, which leads to the formation of amorphous Sb(2)S(3) nanospheres; (2) ultrasound-induced crystallization of these amorphous nanospheres and generation of nanocrystalline irregular short rods; (3) a crystal growth process, giving rise to the formation of regular needle-shaped nanowhiskers; (4) surface corrosion and fragmentation of the nanowhiskers by ultrasound irradiation, resulting in the formation of regular nanorods. The optical properties of the Sb(2)S(3) amorphous nanospheres, irregular short nanorods, needle-shaped nanowhiskers, and regular nanorods are investigated by diffuse reflection spectroscopic measurements, and the band gaps are measured to be 2.45, 1.99, 1.85, and 1.94 eV, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and nanostructural characterization of TiO2 nanorods

TiO2 nanorods are synthesized by a thermal corrosion. In present work, synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases, by using the sol-gel method and alkaline corrosion are reported. The morphologies and crystal structures of TiO2 nanorods are characterized by use of field emission scanning electron microscopy, atomic force microscopy and X-ray diffractometer techniques. The o...

متن کامل

Fabrication and Characterization of Nanoporous Co Oxide (Co3O4) Prepared by Simple Sol-gel Synthesis

Cobalt oxide (Co3O4) nanorods were prepared by a simple co-precipitation method using ethanol solution of cobalt nitrate as precursor and cetyl trimethylammonium bromide (CTAB) as surfactant. Morphological properties of the nanoparticles were characterized. XRD measurement exhibited the structure of Co3O4 nanocrystals for annealed samples. The SEM ima...

متن کامل

Biofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors

Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...

متن کامل

Fabrication, and Effect of Reflux time on Structural Properties of Pure and Al-Doped TiO2 Nano-rod

TiO2 nanorods can be used as dye-sensitized solar cells and as various sensors and photocatalysts. These nanorods are synthesized by a using thermal corrosion process in a NaOH solution at 200 oC with TiO2 powder as a source material. In the present work, the synthesis of TiO2 nanorods in anatase, rutile and Ti8O15 phases and the...

متن کامل

Sonochemical synthesis and characterization of NiMoO4 nanorods.

NiMoO(4) nanorods have been successfully synthesized by sonochemical method process by using Ni(CH(3)COO)(2) · 4H(2)O and (NH(4))(6)Mo(7)O(24) · 4H(2)O as starting materials. Some parameters including ultrasonic power, ultrasonic irradiation time, stirring effect, solvent effect, and surfactant effect were investigated to reach optimum condition. The as synthesized nanostructures were character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 42 20  شماره 

صفحات  -

تاریخ انتشار 2003